Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение icon

Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение


Скачать 412.31 Kb.
НазваниеАрхитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение
страница1/10
Размер412.31 Kb.
ТипРеферат
  1   2   3   4   5   6   7   8   9   10





Архитектура вычислительных систем.

Учебное пособие.


2006




Содержание


Введение


Достижение микроэлектронной технологии позволили значительно расширить возможности всех классов электронных вычислительных машин. Так, разработаны новые микропроцессорные вычислительные средства, являющиеся основой микроЭВМ и персональных ЭВМ. В связи с этим особенно большое внимание следует уделить принципам организации ЭВМ и вычислительных систем различных классов.

Под организацией системы понимается принцип, положенный в основу функционирования системы и правила взаимодействия элементов, обеспечивающие реализацию функций системы.

Система – совокупность взаимосвязанных элементов, объединенных в единое целое для достижения результатов определяемых ее назначением.

Элемент – минимальный неделимый объект, характеризуемый собственными свойствами. Важнейшим из свойств является его целостность. Неделимость элемента обусловлена неизбежным изменением его свойств в случае разделения на отдельные части. При этом переход на другой уровень глубины изучения допускают разложение элемента на составные части, в свою очередь обладающие собственными свойствами отличные от свойств самого элемента.

Функция системы - как целевое назначение, так и поведение системы без относительных составляющих ее элементом и их связям, то есть без определения того как устроена система.

Структура системы – упорядоченная совокупность элементов и связей между ними, обеспечивающих реализацию функции системы. Инженерной формой изображению структуры системы является схема, в которой элементы и связи между ними обозначены фигурами удобными для практического применения.

Комплекс – система элементов в их взаимосвязи.

Вычислительная система – совокупность аппаратных и программных средств, объединенных для решения поставленных перед системой задач и обладающих способностью обработку информации и формировать управляющие воздействия под программным воздействием.

Вычислительная сеть (сеть ЭВМ) – сеть передачи данных, в одном или нескольких узлах которой располагаются вычислительные машины. Сеть передачи данных состоит из нескольких узлов (станций), соединенных различными каналами связи.

Архитектура ВС – совокупность характеристик и параметров, определяющих функциональную и структурную организацию системы, структуру обрабатываемых данных и т.д.

Понятие архитектуры ВС охватывает комплекс общих вопросов ее построения, возможностями и свойствами системы, а не деталями технической реализации.

Качество системы – мера одного из свойств системы всегда имеющая количественный смысл, поэтому использование некоторого показателя предполагает наличие способа измерения или оценки его значения, а также проведения измерения соответствующего свойства системы.

Оптимальная система – система, соответствующая максимальному значению прямого (минимальному для инверсного) критерия эффективности на множестве возможных вариантов построения системы.



  1. Характеристики и режимы работы ЭВМ




    1. ^ Основные характеристики ЭВМ

Появление любого нового направления в вычислительной технике определяется требованиями компьютерного рынка. Поэтому у разработчиков компьютеров нет одной единственной цели, одна из которых повышение основных характеристик:

- отношение стоимость/производительность;

  • надежность и отказоустойчивость;

  • масштабируемость;

  • совместимость и мобильность программного обеспечения.


Большая универсальная вычислительная машина (мейнфрейм) или суперкомпьютер стоят дорого. Для достижения поставленных целей при проектировании высокопроизводительных конструкций приходится игнорировать стоимостные характеристики. Суперкомпьютеры фирмы Cray Research и высокопроизводительные мейнфреймы компании IBM относятся именно к этой категории компьютеров. Другим крайним примером может служить низкостоимостная конструкция, где производительность принесена в жертву для достижения низкой стоимости. К этому направлению относятся персональные компьютеры различных клонов IBM PC. Между этими двумя крайними направлениями находятся конструкции, основанные на отношении стоимость/ производительность, в которых разработчики находят баланс между стоимостными параметрами и производительностью. Типичными примерами такого рода компьютеров являются миникомпьютеры и рабочие станции.

Для сравнения различных компьютеров между собой обычно используются стандартные методики измерения производительности. Эти методики позволяют разработчикам и пользователям использовать полученные в результате испытаний количественные показатели для оценки тех или иных технических решений, и в конце концов именно производительность и стоимость дают пользователю рациональную основу для решения вопроса, какой компьютер выбрать.

Важнейшей характеристикой вычислительных систем является надежность. Повышение надежности основано на принципе предотвращения неисправностей путем снижения интенсивности отказов и сбоев за счет применения электронных схем и компонентов с высокой и сверхвысокой степенью интеграции, снижения уровня помех, облегченных режимов работы схем, обеспечение тепловых режимов их работы, а также за счет совершенствования методов сборки аппаратуры.

Отказоустойчивость - это такое свойство вычислительной системы, которое обеспечивает ей, как логической машине, возможность продолжения действий, заданных программой, после возникновения неисправностей. Введение отказоустойчивости требует избыточного аппаратного и программного обеспечения. Направления, связанные с предотвращением неисправностей и с отказоустойчивостью, - основные в проблеме надежности. Концепции параллельности и отказоустойчивости вычислительных систем естественным образом связаны между собой, поскольку в обоих случаях требуются дополнительные функциональные компоненты. Поэтому, собственно, на параллельных вычислительных системах достигается как наиболее высокая производительность, так и, во многих случаях, очень высокая надежность. Имеющиеся ресурсы избыточности в параллельных системах могут гибко использоваться как для повышения производительности, так и для повышения надежности. Структура многопроцессорных и многомашинных систем приспособлена к автоматической реконфигурации и обеспечивает возможность продолжения работы системы после возникновения неисправностей.

Следует помнить, что понятие надежности включает не только аппаратные средства, но и программное обеспечение. Главной целью повышения надежности систем является целостность хранимых в них данных.

Масштабируемость представляет собой возможность наращивания числа и мощности процессоров, объемов оперативной и внешней памяти и других ресурсов вычислительной системы. Масштабируемость должна обеспечиваться архитектурой и конструкцией компьютера, а также соответствующими средствами программного обеспечения.

Добавление каждого нового процессора в действительно масштабируемой системе должно давать прогнозируемое увеличение производительности и пропускной способности при приемлемых затратах. Одной из основных задач при построении масштабируемых систем является минимизация стоимости расширения компьютера и упрощение планирования. В идеале добавление процессоров к системе должно приводить к линейному росту ее производительности. Однако это не всегда так. Потери производительности могут возникать, например, при недостаточной пропускной способности шин из-за возрастания трафика между процессорами и основной памятью, а также между памятью и устройствами ввода/вывода. В действительности реальное увеличение производительности трудно оценить заранее, поскольку оно в значительной степени зависит от динамики поведения прикладных задач.

Возможность масштабирования системы определяется не только архитектурой аппаратных средств, но зависит от заложенных свойств программного обеспечения. Масштабируемость программного обеспечения затрагивает все его уровни от простых механизмов передачи сообщений до работы с такими сложными объектами как мониторы транзакций и вся среда прикладной системы. В частности, программное обеспечение должно минимизировать трафик межпроцессорного обмена, который может препятствовать линейному росту производительности системы. Аппаратные средства (процессоры, шины и устройства ввода/вывода) являются только частью масштабируемой архитектуры, на которой программное обеспечение может обеспечить предсказуемый рост производительности. Важно понимать, что простой переход, например, на более мощный процессор может привести к перегрузке других компонентов системы. Это означает, что действительно масштабируемая система должна быть сбалансирована по всем параметрам.

Концепция программной совместимости впервые в широких масштабах была применена разработчиками системы IBM/360. Основная задача при проектировании всего ряда моделей этой системы заключалась в создании такой архитектуры, которая была бы одинаковой с точки зрения пользователя для всех моделей системы независимо от цены и производительности каждой из них. Огромные преимущества такого подхода, позволяющего сохранять существующий задел программного обеспечения при переходе на новые (как правило, более производительные) модели были быстро оценены как производителями компьютеров, так и пользователями и начиная с этого времени практически все фирмы-поставщики компьютерного оборудования взяли на вооружение эти принципы, поставляя серии совместимых компьютеров. Следует заметить, что со временем даже самая передовая архитектура неизбежно устаревает и возникает потребность внесения радикальных изменений архитектуру и способы организации вычислительных систем.

В настоящее время одним из наиболее важных факторов, определяющих современные тенденции в развитии информационных технологий, является ориентация компаний-поставщиков компьютерного оборудования на рынок прикладных программных средств. Это объясняется прежде всего тем, что для конечного пользователя в конце концов важно программное обеспечение, позволяющее решить его задачи, а не выбор той или иной аппаратной платформы. Переход от однородных сетей программно совместимых компьютеров к построению неоднородных сетей, включающих компьютеры разных фирм-производителей, в корне изменил и точку зрения на саму сеть: из сравнительно простого средства обмена информацией она превратилась в средство интеграции отдельных ресурсов - мощную распределенную вычислительную систему, каждый элемент которой (сервер или рабочая станция) лучше всего соответствует требованиям конкретной прикладной задачи.

Этот переход выдвинул ряд новых требований. Прежде всего такая вычислительная среда должна позволять гибко менять количество и состав аппаратных средств и программного обеспечения в соответствии с меняющимися требованиями решаемых задач. Во-вторых, она должна обеспечивать возможность запуска одних и тех же программных систем на различных аппаратных платформах, т.е. обеспечивать мобильность программного обеспечения. В третьих, эта среда должна гарантировать возможность применения одних и тех же человеко-машинных интерфейсов на всех компьютерах, входящих в неоднородную сеть. В условиях жесткой конкуренции производителей аппаратных платформ и программного обеспечения сформировалась концепция открытых систем, представляющая собой совокупность стандартов на различные компоненты вычислительной среды, предназначенных для обеспечения мобильности программных средств в рамках неоднородной, распределенной вычислительной системы.

Одним из вариантов моделей открытой среды является модель OSE (Open System Environment), предложенная комитетом IEEE POSIX. На основе этой модели национальный институт стандартов и технологии США выпустил документ "Application Portability Profile (APP). The U.S. Government's Open System Environment Profile OSE/1 Version 2.0", который определяет рекомендуемые для федеральных учреждений США спецификации в области информационных технологий, обеспечивающие мобильность системного и прикладного программного обеспечения. Все ведущие производители компьютеров и программного обеспечения в США в настоящее время придерживаются требований этого документа.


^ 1.2. Режимы работы ЭВМ

В современных ЭВМ можно выделить следующие режимы работы:

- однопрограммный;

- мультипрограммный;

- пакетной обработки;

- разделения во времени;

- диалоговый;

- режим реального времени.


^ 1.2.1. Однопрограммный режим работы

Режим, при котором выполняется не более одной независимой программы. При таком режиме работы ЭВМ решение задачи начинается с загрузки программы в ОП, после чего ЭВМ последовательно выполняет команды программы. При этом в каждый момент времени работает одно ее устройство, в то время как остальные простаивают в ожидании окончания ранее начатого действия. Значительные потери рабочего времени ЭВМ связаны с медленной работой устройства ввода-вывода по сравнению с работой быстродействующих устройств (АЛУ, ЦУУ, ОЗУ и т.д.).


^ 1.2.2. Мультипрограммный режим работы

Режим, при котором в памяти ЭВМ хранится несколько программ и выполнение одной программы может быть прервано для перехода к выполнению другой с последующим возвратом к прерванной программе. При совместном выполнении нескольких программ простои оборудования уменьшаются, поскольку увеличивается вероятность того, что среди находящихся в ЭВМ программ имеется одна, готовая к использованию освободившегося оборудования. Для уменьшения простоев оборудования ЭВМ широко применяют метод организации параллельной работы устройства ЭВМ за счет совмещения различных операций при работе ЭВМ. В целях более эффективного использования ЭВМ организуют мультипрограммную обработку информации на ЭВМ так, чтобы ею параллельно выполнялись команды, относящиеся к различным и независимым программам.

Мультипрограммный режим повышает производительность ЭВМ за счет увеличения числа задач, решаемых ЭВМ в течение некоторого промежутка времени. При этом время решения отдельной задачи увеличивается по сравнению с временем решения ее в однопрограммном режиме.


^ 1.2.3. Режим пакетной обработки

Для обеспечения мультипрограммной обработки информации необходимо наличие нескольких задач, ожидающих обработки. Для эффективной загрузки ЭВМ используется режим пакетной обработки данных. В этом режиме задачи (программы и данные), подготовляемые многими пользователями ЭВМ, собираются в пачки-пакеты. Пакет состоит из заданий (не более 15), относящимся ко многим задачам, обработка которых занимает не менее часа машинного времени.

Различают два режима пакетной обработки. В первом число задач, выполняемых одновременно, фиксируется, а во втором не фиксируется, но в процессе обработки пакета ЭВМ оно может изменяться пакета ЭВМ оно может изменяться динамически. Пакет, предварительно записанный на том или ином носителе информации, вводится в ОЗУ ЭВМ. Когда пакет загружен, ЭВМ выбирает на обработку несколько задач и начинает выполнять их мультипрограммном режиме. Когда решение одной группы задач пакета закончено, из него выбирается для обработки следующая группа, это продолжается до тех пор, пока не будет обработана последняя группа задач пакета. После этого в ЭВМ вводится новый пакет задач.

Пакетная обработка данных позволяет увеличить производительность ЭВМ и уменьшить стоимость машинной обработки информации.


^ 1.2.4. Режим разделения времени

Этот режим обеспечивает непосредственный и одновременный доступ к ЭВМ некоторому количеству пользователей чаще всего с дистанционно удаленных пунктов (терминалов). Терминал – периферийное устройство, предназначенное для обслуживания одного человека, решающего задачи на ЭВМ.

Пользователи с помощью терминалов вводят в ЭВМ исходные данные и программы и получают результаты вычислений. ЭВМ предоставляет каждому активному терминалу квант времени, равный секундам и долям секунды. По истечении этого времени ЭВМ переходит к обслуживанию следующего пользователя. За некоторый период времени ЭВМ обслуживает всех пользователей. При достаточно высоком быстродействии ЭВМ у отдельного пользователя создается иллюзия непрерывного контакта с ЭВМ.

Разделение времени позволяет устранить потери машинного времени, связанные с вмешательством оператора в работу ЭВМ из-за сравнительно низкой его скорости реакции, необходимости выполнения им определенных действий вне ЭВМ и медленного ввода информации с пульта оператора. При мультипрограммной работе ЭВМ в промежуточные паузы работы одного оператора к ЭВМ имеют доступ другие, что позволяет обеспечить полную загрузку внутренних устройств ЭВМ и тем самым поднять эффективность ее работы.

Режим разделения времени совместим с режимом пакетной обработки данных, которая предусматривается в ЭВМ для решения задач в отдельные периоды времени, когда пользователи не загружают ЭВМ полностью.


^ 1.2.5. Диалоговый режим работы

Режим (режим “запрос-ответ”), при котором все программы пользователей постоянно хранятся в памяти ЭВМ и пользователи имеют непосредственный доступ к ЭВМ. От пользователей в ЭВМ поступают входные данные и запросы с пультовых пишущих машинок или дисплеев. Ответ формируется по программе, соответствующей определенному запросу. Выбор допустимых запросов ограничен емкостью памяти. Каждый запрос имеет соответствующий приоритет и временные ограничения на срок обслуживания.


^ 1.2.6. Режим работы в реальном масштабе времени

Режим, при котором ЭВМ управляет работой какого-либо объекта или технологического процесса. Особенностью работы в реальном масштабе времени является то, что, помимо арифметической и логической обработки, выполняется слежение за работой объекта или прохождение некоторого процесса. Реализация этого режима привела к усложнению устройств и программного обеспечения ЭВМ.


  1. Классификация компьютеров по областям применения


^ 2.1. Персональные компьютеры и рабочие станции

Персональные компьютеры (ПК) появились в результате эволюции миникомпьютеров при переходе элементной базы машин с малой и средней степенью интеграции на большие и сверхбольшие интегральные схемы. ПК, благодаря своей низкой стоимости, очень быстро завоевали хорошие позиции на компьютерном рынке и создали предпосылки для разработки новых программных средств, ориентированных на конечного пользователя. Это прежде всего - "дружественные пользовательские интерфейсы", а также проблемно-ориентированные среды и инструментальные средства для автоматизации разработки прикладных программ.

Миникомпьютеры стали прародителями и другого направления развития современных систем - 32-разрядных машин. Создание RISC-процессоров и микросхем памяти емкостью более 1 Мбит, привело к окончательному оформлению настольных систем высокой производительности, которые сегодня известны как рабочие станции. Первоначальная ориентация рабочих станций на профессиональных пользователей (в отличие от ПК, которые в начале ориентировались на самого широкого потребителя непрофессионала) привела к тому, что рабочие станции - это хорошо сбалансированные системы, в которых высокое быстродействие сочетается с большим объемом оперативной и внешней памяти, высокопроизводительными внутренними магистралями, высококачественной и быстродействующей графической подсистемой и разнообразными устройствами ввода/вывода. Это свойство выгодно отличает рабочие станции среднего и высокого класса от ПК и сегодня. Даже наиболее мощные IBM PC совместимые ПК не в состоянии удовлетворить возрастающие потребности систем обработки из-за наличия в их архитектуре ряда "узких мест".

Тем не менее быстрый рост производительности ПК на базе новейших микропроцессоров Intel в сочетании с резким снижением цен на эти изделия и развитием технологии локальных шин (VESA и PCI), позволяющей устранить многие "узкие места" в архитектуре ПК, делают современные персональные компьютеры весьма привлекательной альтернативой рабочим станциям. В свою очередь производители рабочих станций создали изделия так называемого "начального уровня", которые по стоимостным характеристикам близки к высокопроизводительным ПК, но все еще сохраняют лидерство по производительности и возможностям наращивания.

Современный рынок "персональных рабочих станций" не просто определить. По сути он представляет собой совокупность архитектурных платформ персональных компьютеров и рабочих станций, которые появились в настоящее время, поскольку поставщики компьютерного оборудования уделяют все большее внимание рынку продуктов для коммерции и бизнеса. Этот рынок традиционно считался вотчиной миникомпьютеров и мейнфреймов, которые поддерживали работу настольных терминалов с ограниченным интеллектом. В прошлом персональные компьютеры не были достаточно мощными и не располагали достаточными функциональными возможностями, чтобы служить адекватной заменой подключенных к главной машине терминалов. С другой стороны, рабочие станции на платформе UNIX были очень сильны в научном, техническом и инженерном секторах и были почти также неудобны, как и ПК для того чтобы выполнять серьезные офисные приложения. С тех пор ситуация изменилась коренным образом. Персональные компьютеры в настоящее время имеют достаточную производительность, а рабочие станции на базе UNIX имеют программное обеспечение, способное выполнять большинство функций, которые стали ассоциироваться с понятием "персональной рабочей станции". Вероятно оба этих направления могут серьезно рассматриваться в качестве сетевого ресурса для систем масштаба предприятия. В результате этих изменений практически ушли со сцены старомодные миникомпьютеры с их патентованной архитектурой и использованием присоединяемых к главной машине терминалов. По мере продолжения процесса разукрупнения (downsizing) и увеличения производительности платформы Intel наиболее мощные ПК (но все же чаще открытые системы на базе UNIX) стали использоваться в качестве серверов, постепенно заменяя миникомпьютеры.

Среди других факторов, способствующих этому процессу, следует выделить:

Применение ПК стало более разнообразным. Помимо обычных для этого класса систем текстовых процессоров, даже средний пользователь ПК может теперь работать сразу с несколькими прикладными пакетами, включая электронные таблицы, базы данных и высококачественную графику.

Адаптация графических пользовательских интерфейсов существенно увеличила требования пользователей ПК к соотношению производительность/стоимость. И хотя оболочка MS Windows может работать на моделях ПК 386SX с 2 Мбайтами оперативной памяти, реальные пользователи хотели бы использовать все преимущества подобных систем, включая возможность комбинирования и эффективного использования различных пакетов.

Широкое распространение систем мультимедиа прямо зависит от возможности использования высокопроизводительных ПК и рабочих станций с адеквантными аудио- и графическими средствами, и объемами оперативной и внешней памяти.

Слишком высокая стоимость мейнфреймов и даже систем среднего класса помогла сместить многие разработки в область распределенных систем и систем клиент-сервер, которые многим представляются вполне оправданной по экономическим соображениям альтернативой. Эти системы прямо базируются на высоконадежных и мощных рабочих станциях и серверах.

В начале представлялось, что необходимость сосредоточения высокой мощности на каждом рабочем месте приведет к переходу многих потребителей ПК на UNIX-станции. Это определялось частично тем, что RISC-процессоры, использовавшиеся в рабочих станциях на базе UNIX, были намного более производительными по сравнению с CISC-процессорами, применявшимися в ПК, а частично мощностью системы UNIX по сравнению с MS-DOS и даже OS/2.

Производители рабочих станций быстро отреагировали на потребность в низкостоимостных моделях для рынка коммерческих приложений. Потребность в высокой мощности на рабочем столе, объединенная с желанием поставщиков UNIX-систем продавать как можно больше своих изделий, привела такие компании как Sun Microsystems и Hewlett Packard на рынок рабочих станций для коммерческих приложений. И хотя значительная часть систем этих фирм все еще ориентирована на технические приложения, наблюдается беспрецедентный рост продаж продукции этих компаний для работы с коммерческими приложениями, требующими все большей и большей мощности для реализации сложных, сетевых прикладных систем, включая системы мультимедиа.

  1   2   3   4   5   6   7   8   9   10

Похожие:

Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение iconАрхитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение
Так, разработаны новые микропроцессорные вычислительные средства, являющиеся основой микроэвм и персональных ЭВМ. В связи с этим...
Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение iconУчебное пособие Москва-Рязань
Права человека: учебное пособие /Ю. С. Бадальянц, Д. А. Ягофаров. – Москва-Рязань: Издательство «Поверенный», 2006. – 519 с
Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение iconУчебное пособие для вузов М.: Аспект Пресс, 2004. Оглавление введение
Охватывает период так называемой пражурналистики – с I в до н э. Под ней понимают возникновение первичных способов, средств, методов,...
Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение iconУчебное пособие для студентов высших и средних специальных учебных заведений. М., 2001. Введение
Канке В. А. Философия: учебное пособие для студентов высших и средних специальных
Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение iconИ. В. Паблик рилейшнз для менеджеров и маркетеров. М., 1997. Варакута С. А., Егоров Ю. Н. Связи с общественностью Уч пос-е. М.,2004. Чумиков А. Н., Бочаров М. П. Связи с общественностью: теория и практика. Учебное пособие
Чумиков А. Н., Бочаров М. П. Связи с общественностью: теория и практика. Учебное пособие. – М., 2006
Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение iconУчебное пособие для участников торгов на мировых биржах Содержание введение 7
Охватывают вас во время игры, чтобы убедиться в логической обоснованности ваших решений. Вам нужна такая структура управления капиталом,...
Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение iconЮ. Ф. Введение в актуарную математику > Кузнецова Н. Л., А. В. Сапожникова Актуарная математика. Учебное пособие

Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение iconУчебное пособие санкт-петербург
Учебное пособие предназначено для самостоятельной подготовки курсантов и проведения практических занятий на базе городской детской...
Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение iconОбщая архитектура современных микропроцессорных систем
...
Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение iconУчебное пособие для студентов химического факультета. Уфа: риц башГУ, 2012. 89с. Введение
Химическая технология. Часть Физико-химические закономерности в химической технологии: Учебное пособие для студентов химического...
Архитектура вычислительных систем. Учебное пособие. 2006 Содержание Введение iconУчебное пособие для самостоятельной работы Ставрополь 2010 ббк 63. 3 (2) Я73 удк 99 (С) р -82
Учебное пособие предназначено для студентов медицинских и фармацевтических вузов
Вы можете разместить ссылку на наш сайт:
Документы


При копировании материала укажите ссылку ©ignorik.ru 2015

контакты
Документы