Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса icon

Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса


Скачать 294.71 Kb.
НазваниеЛекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса
страница1/6
Размер294.71 Kb.
ТипЛекции
  1   2   3   4   5   6

Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции


Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса


Биотехнология - это новая, сравнительно недавно получившая широкое развития наука о практическом использование различных биологических (генов, клеток, тканей, микроорганизмов, растений и животных) с целью получения антибиотиков, ферментов, кормовых белков, биоудобрений, безвирусных растений новых сортов растений и животных, переработки сырья, промышленных и сельскохозяйственных отходов, очистки сточных вод и газовоздушных выбросов и так далее. Успехи, достигнутые в области биотехнологии, стали возможными благодаря бурному развитию таких наук, как биохимия, генетика, цитология, микробиология, молекулярная биология и другие.


^ История возникновения и развития биотехнологии


История возникновения и развития биотехнологии включает три этапа.


1 этап - зарождение биотехнологии с древних времен до конца XVIII в. Археологические раскопки показывают, что ряд биотехнологических процессов зародились в древности. На территории древнейших очагов в Месопотамии, Египте сохранились остатки пекарен, пивоваренных заводов, сооруженных 4-6 тысячелетий назад. В 3 тысячелетии до н. э. шумеры изготовляли до двух десятков сортов пива. В Древней Греции и Риме широкое распространение получили виноделие и изготовление сыра. В основе пивоварения и виноделия лежит деятельность дрожжевых грибков, сыроделия - молочнокислых бактерий, сычужного фермента Получение льняного волокна происходит с разрушением пектиновых веществ микроскопическими грибами и бактериями. Иными словами, зарождение биотехнологии тесно связано с сельским хозяйством, переработкой растениеводческой и животноводческой продукции.


2 этап (XIX - первая половина XX в.) - становление биотехнологии как

науки. Этот этап связан с началом бурного развития биологических наук: генетики, микробиологии, вирусологии, цитологии, физиологии, эмбриологии. На рубеже XIX и XX вв. в ряде стран создаются первые биогазовые установки, в которых отходы животноводства и растениеводства под действием микроорганизмов превращались в биогаз (метан) и удобрение. В конце 40-х годов XX, века, с организацией крупномасштабного производства антибиотиков стала развиваться микробиологическая промышленность. Антибиотики нашли широкое применение не только в медицине, но и в сельском хозяйстве для лечения животных и растений, в качестве биодобавок в корма. Были созданы высокоэффективные формы с помощью мутаций. Возникли предприятия, на которых с помощью микроорганизмов производились аминокислоты, витамины, органические кислоты, ферменты. В конце 60-х годов получила развитие технология иммобилизованных ферментов.


3 этап (с середины 70-х годов XX века) - ознаменовался развитием биотехнологии в различных направлениях с помощью методов генной и клеточной инженерии. Формальной датой рождения современной биотехнологии считается 1972г., когда была создана первая рекомбинативная (гибридная) ДНК, путем встраивания в нее чужеродных генов. До этого момента использовались, главным образом, физические и химические мутагены с целью создания форм микроорганизмов, синтезирующих ценные для человека вещества в 5 - 10 раз интенсивнее, по сравнению с исходными штаммами.


^ Биотехнологический процесс


Основная цель биотехнологии - промышленное использование биологических процессов и агентов на основе получения высокоэффективных форм микроорганизмов, культур клеток и тканей растений и животных с заданными свойствами. Биотехнология возникла на стыке биологических, химических и технических наук.


Биотехнологический процесс - включает ряд этанов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование продуктов.


Первым детально изученным процессом было брожение. Французский ученый Луи Пастср (1822 - 1895) первым показал, что брожение - это жизнь без свободного кислорода или анаэробное дыхание, происходящее при участии дрожжевых грибов. По вопросам бродильного производства - виноделию, пивоварению и получению уксуса - он опубликовал 3 монографии.


Биотехнологические процессы могут быть основаны на периодическом или непрерывном культивировании.


Во многих странах мира биотехнологии придается первостепенное значение. Это связано с тем, что биотехнология имеет ряд существенных преимуществ перед другими видами технологий, например, химической.


1). Это, прежде всего, низкая энергоемкость. Биотехнологические процессы совершаются при нормальном давлении и температурах 20-40° С.


2). Биотехпологическое производство чаще базируется на использовании стандартного однотипною оборудования. Однотипные ферменты применяются для производства аминокислот, витаминов; ферментов, антибиотиков.


3). Биотехнологические процессы несложно сделать безотходными. Микроорганизмы усваивают самые разнообразные субстраты, поэтому отходы одного какого-то производства можно превращать в ценные продукты с помощью микроорганизмов в ходе другого производства.


4). Безотходность биотехнологических производств делает их экологически наиболее чистыми. Экологическая целесообразность биотехнологических производств определяется также возможностью ликвидации с их помощью биологических отходов - побочных продуктов пищевой, деревообрабатывающей, целлюлозно-бумажной промышленности, в сельском и городском хозяйствах.


5). Исследования в области биотехонологии не требуют крупных капитальных вложений, для их проведения не нужна дорогостоящая аппаратура.


К первоочередным задачам современной биотехнологии относятся -создание и широкое освоение:


1)новых биологически активных веществ и лекарственных препаратов для медицины (интерферонов, инсулина, гормонов роста, антител);


2)микробиологических средств защиты растений от болезней и вредите­

лей, бактериальных удобрений и регуляторов роста растений, новых высокопродуктивных и устойчивых к неблагоприятным факторам внешней среды гибридов сельскохозяйственных растений, полученных методами генетической и клеточной инженерии;


3)ценных кормовых добавок и биологически активных веществ (кормового белка, аминокислот, ферментов, витаминов, кормовых антибиотиков) для повышения продуктивности животноводства;


4)новых технологий получения хозяйственно-ценных продуктов для использования в пищевой, химической, микробиологической и других отраслях промышленности;


5)технологий глубокой и эффективной переработки сельскохозяйственных, промышленных и бытовых отходов, использования сточных вод и газовоздушных выбросов для получения биогаза и высококачественных удобрений.


^ Принципы биотехнологии


1. Принцип экономической обоснованности. Биотехнология внедряется только в те производственные процессы, которые нельзя эффективно и с теми же затратами реализовать средствами традиционной технологии. Аминокислоту лизин можно легко синтезировать химическим путем, но это весьма трудоёмкая процедура, поэтому лизин получают путем микробиологического синтеза.


2. Принцип целесообразного уровня технологических разработок.

Масштаб производства продукта, степень его очистки, уровень автоматизации производства - все это должно прямо определяться соображениями экономической выгоды, сырьевыми и энергетическими ресурсами, уровнем спроса готового продукта. Для получения препаратов медицинского назначения, которые требуются в количестве нескольких сотен граммов в год, целесообразно использовать небольшие биореакторы, крупномасштабное производство здесь себя не оправдывает. В большинстве современных микробиологических производств стремятся к использованию чистых культур микроорганизмов и к полной стерильности

оборудования, сред, воздуха, но в некоторых случаях, продукт, удовлетворяющий потребителя (например, биогаз), может быть получен и без чистых культур, растущих в условиях не стерильности.


3. Принцип научной обоснованности биотехнологпческого процесса.

Научные знания позволяют заранее провести расчет параметров среды, конструкции биореактора и режима его работ.


4. Принцип удешевления производства (максимальное снижение затрат). Как пример - использование в биотехнологических процессах энергии Солнца, естественных биореакторов - природных водоёмов - вместо рукотворных аппаратов, в частности, для получения биомассы одноклеточных водорослей.


Изложенные принципы говорят о двуединой задаче биотехнологии: создание оптимальных условий для синтеза целевого продукта клетками биообъекта и в то же время вести производство в максимально экономическом режиме, при минимальных производственных затратах.


^ Биологические объекты биотехнологии


Главным объектом биотехнологического процесса является клетка. В ней синтезируется целевой продукт. По сути, клетка представляет собой миниатюрный химический завод, где ежеминутно синтезируются сотни сложнейших соединений.


Основа современного биотехнологического производства - синтез различных веществ с помощью клеток микроорганизмов. Клетки высших растений и животных еще не нашли широкого применения, ввиду их высокой требовательности к условиям культивирования.


Начальным этапом биотехнологической разработки является получение чистых культур клеток и тканей. Дальнейшие манипуляции с этими культурами характеризуется единообразием подходов, основанных на классических методах микробиологии. При этом культуры клеток и тканей высших растений и животных уподобляются культурам микроорганизмов.


Эукариоты и прокариоты. Большинство микроорганизмов - одноклеточные существа. Микробная клетка отделена от внешней среды клеточной стенкой, а иногда лишь цитоплазматической мембраной и содержит различные суб­клеточные структуры. Существует два основных типа клеточного строения, которые отличаются друг от друга рядом фундаментальных признаков. Это эукариотические и прокариотические клетки. Микроорганизмов, имеющих истинное ядро, называют эукариотами (эу - от греческого - истинный, карио - ядро). Микроорганизмы с примитивным ядерным аппаратом относятся к прокариотам (до ядерным).


Среди микроорганизмов к прокариотам относятся бактерии, актиномицеты и сине-зеленые водоросли (цианобактерии), к эукариотам - прочие водоросли (зеленые, бурые, красные), микомицеты (слизевики), низшие грибы - микромицеты (включая дрожжи), простейшие (жгутиконосцы, инфузории и др.).


Их общее свойство - малые размеры, они видны лишь в микроскоп. В настоящее время известно более 100 тыс. видов различных микроорганизмов.


У прокариот не происходят процессы митоза и мейоза. Они размножаются чаще простым делением клетки.


В эукариотической клетке имеется ядро, отделенное от окружающей его цитоплазмы двухслойной ядерной мембраной с порами. В ядре находятся 1-2 ядрышка - центры синтеза рибосомальной РНК и хромосомы - основные носители наследственной информации, состоящие из ДНК и белка. При делении хромосомы распределяются между дочерними клетками в результате сложных процессов - митоза и мейоза. Цитоплазма эукариот содержит митохондрии, а у фотосинтезирующих организмов и хлоропласта. Цитоплазматическая мембрана, окружающая клетку, переходит внутри цитоплазмы в эндоплазматическую сеть; имеется также мембранная органелла - аппарат Гольджи.


Прокариотические клетки устроены проще. В них нет четкой границы между ядром и цитоплазмой, отсутствует ядерная мембрана. ДНК в этих клетках не образует структур, похожих на хромосомы эукариот. У прокариот не происходят процессы митоза и мейоза. Большинство прокариот не образует внутриклеточных органелл, ограниченных мембранами, нет митохондрий и хлоропластов.


^ Подбор форм микроорганизмов с заданными свойствами


Подбор необходимых для культивирования форм микроорганизмов с заданными свойствами включает несколько этапов.


2.1. Выделение микроорганизмов. Отбираются пробы из мест обитания микроорганизмов (почва, растительные остатки и т.д.). Применительно к углеводородокисляющим микроорганизмам таким местом может быть почва возле бензоколонок, винные дрожжи обильно встречаются на винограде, анаэробные целлюлозаразлагающие и метанобразующие микроорганизмы в больших количествах обитают в рубце жвачных животных.


2.2. Получение накопительных культур. Образцы вносят в жидкие питательные среды специального состава, создают благоприятные условия для развития продуцента (температура, РН, источники энергии, углерода,

азота и т.д.). Для накопления продуцента холестериноксидазы используют среды с холестерином в качестве единственного источника углерода; углеводородокисляющих микроорганизмов - среды с парафинами; продуцентов протеолитических или липолитических ферментов - среды, содержащие белки или липиды.


2.3. Выделение чистых культур. На плотные питательные среды засевают образцы проб из накопительных культур. Отдельные клетки микроорганизмов на плотных питательных средах образуют изолированные

колонии или клоны, при их пересеве получаются чистые культуры, состоящие из клеток одного вида продуцента.


Другой путь подбора микроорганизмов - из имеющихся коллекций. Например, продуцентами антибиотиков чаще являются актиномицеты, этанола -дрожжи.


Клон - культура, полученная из одной клетки, чистая культура - совокупность особей одного вида микроорганизмов, штаммы - культуры, выделенные из различных природных сред или из одной среды в разное время.


2.4. Определение способности синтезировать целевой продукт - главный критерий при отборе продуцентов. Микроорганизмы должны соответствовать следующим требованиям:


1)обладать высокой скоростью роста;


2)использовать для жизнедеятельности дешевые субстраты;


3)быть устойчивыми к заражению посторонней микрофлорой.


Одноклеточные организмы характеризуются более высокими скоростями синтетических процессов, чем высшие растения и животные. Так, корова массой 500 кг в течение одних суток синтезирует около 0,5 кг белка. Такое Же количество белка за одни сутки можно получить с помощью 5 г дрожжей. Интерес представляют фотосинтезирующие микроорганизмы, использующие энергию света, способные к усвоению атмосферного азота. Выгодны термофильные микроорганизмы. Их использование снижает дополнительные затраты на стерилизацию промышленного оборудования. Скорость роста и обмен веществ у этих организмов в 1,5-2 раза выше, чем у мезофилов. Синтезирующие ими ферменты устойчивы к нагреванию, действию кислот, органических растворителей.


^ В биотехнологии выделяют 2 метода: 1) Селекция; 2) Генная инженерия. Для получения высокоактивных продуктов используют методы селекции. С помощью селекции получены промышленные штаммы микроорганизмов, синтетическая активность которых превышает активность исходных штаммов в десятки и сотни раз.


Селекция - направленный отбор мутантов (организмов, наследственность которых претерпела скачкообразное изменение). Генеральный путь селекции -переход от простого отбора продуцентов к сознательному конструированию их геномов. На каждом из этапов из популяции микроорганизмов отбираются наиболее высокоэффективные клоны. Таким путем за длительное время были отобраны штаммы пивных, винных, пекарских, уксуснокислых дрожжей, пропионовокислых бактерий и др. Применяется ступенчатый отбор: на каждом из этапов из популяции микроорганизмов отбираются наиболее высокоэффективные клоны. Ограниченность метода селекции, основанного на спонтанных мутациях, связана с их низкой частотой, что значительно затрудняет интенсификацию процесса. Изменения в структуре ДНК происходят редко. Ген должен удвоиться в среднем 106-108 раз, чтобы возникла мутация. Примером отбора наиболее продуктивных мутантов при культивировании в непрерывном режиме является отбор дрожжей по признаку устойчивости к этанолу, продукту жизнедеятельности дрожжей. К значительному ускорению селекции ведет индуцированный мутагенез - резкое увеличение частоты мутаций биообъекта при искусственном повреждении генома. Мутагенным действием обладают ультрафиолетовое, рентгеновское или у-излучение, некоторые химические соединения, вызывающие изменения первичной структуры ДНК. К числу наиболее известных и используемых мутагенов относятся азотистая кислота, алкилирующие агенты и т.д.


Проводят тотальную проверку (скрининг) полученных клонов. Отобрав наиболее продуктивные клоны, повторяют обработку тем же или другим мутагеном, вновь отбирают наиболее продуктивный вариант и т.д., т.е. речь идет о ступенчатом отборе по интересующему признаку.


Трудоемкость - основной недостаток метода индуцированного мутагенеза и последующего ступенчатого отбора. Недостатком метода является также отсутствие сведений о характере мутаций, исследователь проводит отбор по конечному результату.


^ Генетическая инженерия


Генетическая инженерия – направленная модификация биообъектов в результате введения искусственно созданных генетических программ. Уровни генетической инженерии:


1)генная – прямое манипулирование рекомбинантными ДНК, включающими отдельные гены;


2)хромосомная – манипулирование с группами генов или отдельными хромосомами;


3)геномная (клеточная) – перенос всего или большей части генетичекого материала от одной клетки к другой (клеточная инженерия). В современном понимании генетическая инженерия включает технологию рекомбинантных ДНК.


Работа в области генетической инженерии включает 4 этапа: 1) получение нужного гена; 2) встраивание его в вектор, способный к репликации; 3) введение гена с помощью вектора в организм; 4) питание и селекция клеток, ко­торые приобрели желаемый ген.


Генетическая инженерия высших растений осуществляется на клеточном, тканевом и организменном уровне.


Основой клеточной инженерии является гибридизация соматических клеток – слияние неполовых клеток с образованием единого целого. Слияние клеток может быть полным или с введением их отдельных частей (митохондрий, хлоропластов и т.д.).


Соматическая гибридизация позволяет скрещивать генетически отдаленные организмы. Растительные, грибные и бактериальные клетки перед слиянием освобождают от клеточной стенки и получают протопласты. Затем проводят деполяризацию наружных цитоплазматических мембран переменным электрическим или магнитным полем, используют катионы Са+. Клеточную стенку подвергают ферментативному гидролизу.


^ Способы культивирования микроорганизмов


Биотехнологические процессы воспроизводства микроорганизмов могут быть основаны на периодическом или непрерывном культивировании.


Биореактор, ферментер или ферментатор - это закрытая или открыта емкость, в которой при определенных условиях (давление, температура, концентрация сухих веществ, рН среды и т.д.) протекает на клеточном или молекулярном уровне контролируемая реакция, осуществляемая с помощью микроорганизмов.


Периодический процесс включает: а) стерилизацию сред, биореакторов и вспомогательного оборудования; б) загрузку аппарата питательной средой; в) внесение посевного материала (клеток, спор); г) рост культуры, который может совпадать во времени со следующим этапом или предшествовать ему; д) синтез целевого продукта; е) отделение и очистку готового продукта. Речь идет о временной последовательности этапов, по окончании последнего этапа проводится мойка биореактора и его подготовка к новому циклу.


Этап роста культуры включает несколько фаз: а) лаг-фазу - сравнительно медленный рост внесенной культуры, осваивающей новую среду обитания в объеме биореактора; б) экспоненциальную фазу - бурное деление клеток, сбалансированный рост культуры; в) фазу замедленного роста, связанного с исчерпанием питательных субстратов и накоплением токсических продуктов метаболизма; г) стационарную фазу - прирост клеток равен их убыли; д) фазу отмирания - постепенное снижение числа жизнеспособных клеток.


Биотехнологически ценные продукты синтезируются в экспоненциальную фазу (нуклеотиды, многие ферменты, витамины - так называемые первичные метаболиты) или в стационарную фазу роста (антибиотики, красящие вещества и т.д. — так называемые вторичные метаболиты или идиолиты).


Широко применяют периодическое культивирование с подпиткой: помимо внесения питательного субстрата в реактор до введения в него биообъекта, в процессе культивирования в аппарат добавляют питательные вещества через определенные промежутки времени порциями или непрерывно «по каплям». Иногда дополнительно вносят биообъект.


Существует также отьемнодоливочное культивирование, когда часть объема из биореактора время от времени изымается при добавлении эквивалентною объема среды. Это приводит к регулярному омолаживанию культуры и к задержке ее перехода к фазе отмирания. Такой режим культивирования в значительной мере уподобляется непрерывному процессу, поэтому называется также полунепрерывным культивированием.


В непрерывных процессах биообъект постоянно поддерживается в экспоненциальной фазе роста. Обеспечивается непрерывный приток свежей питательной среды в биореактор и отток из него культуральной жидкости, содержащей клетки и продукты их жизнедеятельности. Фундаментальным принципом непрерывных процессов служит равновесие между приростом биомассы за счет деления клеток и их убылью в результате разбавления свежей средой. Различают хемостатный и турбидостатный режимы непрерывного культивирования.


Глубинный метод культивирования продуцентов ферментов


Глубинный метод культивирования заключается в выращивании микроорганизмов в жидкой питательной среде. Он технически более совершенен, чем поверхностный, так как легко поддается механизации и автоматизации.


Весь процесс должен проводиться в строго асептических условиях, что с одной стороны, является преимуществом метода, а с другой - составляет наибольшую техническую трудность, т.к. нарушение асептики часто приводит к прекращению образования фермента.


Концентрация фермента в среде при глубинном культивировании обычно значительно ниже, чем в водных экстрактах поверхностной культуры. Фильтраты культуральных жидкостей содержат не более 3% сухих веществ. Это вызывает необходимость предварительного концентрирования фильтратов перед тем, как выделять ферменты любым методом.


Поверхностный метод культивирования продуцентов ферментов


Культура растет на поверхности твердой увлажненной питательной среды. Мицелий полностью обволакивает и прочно скрепляет твердые частицы, клетки получают питание за счет содержащихся в этих средах веществ и ис­пользуют для дыхания кислород воздуха, поэтому для их нормального обеспечения кислородом приходится применять рыхлые по своей структуре среды с небольшой высотой слоя.


Недостатком метода является необходимость больших площадей для выращивания. Выращивание производственной культуры происходит обычно в неасептических условиях. Однако среда и кюветы должны быть надежно стерилизованы. Перед новой загрузкой должны дезинфицироваться растильные камеры, а также все мелкое оборудование и инвентарь.


Главное преимущество поверхностного метода - более высокая конечная концентрация фермента на единицу массы среды. Например, для осахаривания 100 кг крахмала в спиртовом производстве требуется 5 кг поверхностной культуры плесневых грибов или около 100 кг культуральной жидкости. Поверхностные культуры можно быстро и легко высушить, их легко перевести в товарную форму и транспортировать. Меньше потребность электроэнергии по сравнению с глубинным методом.

  1   2   3   4   5   6

Похожие:

Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса iconЛекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса
Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса
Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса iconВопросы к экзамену по Биотехнологии с основами иммунологии Биотехнология как наука, предмет, объекты и основные цели. Этапы развития биотехнологии
...
Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса iconПрограмма по резкой интенсификации биотехнологии, в которой обозначены три области исследований биотехнологии
«Био» – жизнь, «технология» – способ, метод индустриального производства. Таким образом, биотехнология – использование живых организмов...
Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса iconБольничная гигиена. Ее основные цели и задачи. Больничная гигиена. Ее основные цели и задачи
Основы гигиены лечебно-профилактических учреждений. Гигиенические требования к стоматологическим поликлиникам
Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса iconБольничная гигиена. Ее основные цели и задачи. Больничная гигиена. Ее основные цели и задачи
Основы гигиены лечебно-профилактических учреждений. Гигиенические требования к стоматологическим поликлиникам
Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса iconБольничная гигиена. Ее основные цели и задачи. Больничная гигиена. Ее основные цели и задачи
Основы гигиены лечебно-профилактических учреждений. Гигиенические требования к стоматологическим поликлиникам
Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса iconВопросы к экзамену Основные задачи в области хранения и переработки растениеводческой продукции
Виды потерь с х продуктов, в массе и качестве при уборке, хранении и переработке
Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса iconМетодические рекомендации по организации учебного процесса на лабораторных занятиях для студентов дневной и заочной форм обучения по специальности 090102
Чертков Д. Д, заведующая кафедрой технологии мелкого животноводства доцент Белогурова В. И., доцент кафедры технологии производства...
Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса iconОсновы гигиены лечебно-профилактических учреждений. Больничная гигиена. Ее основные цели и задачи

Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса iconИзложение материала Время
Изучить сущность и содержание понятий «качество продукции», «стандартизация и сертификация продукции», основные показатели качества;...
Лекции по курсу Основы биотехнологии переработки сельскохозяйственной продукции Цели, задачи, основные биологические объекты биотехнологии. Особенности биотехнологического процесса iconЛекции по курсу «Испытания конструкций и систем космических аппаратов» (специальность 1307, 10-ый семестр)
Основные этапы разработки ка. Цель, задачи и критерии эффективности экспериментальной отработки ка. Классификация испытаний ка
Вы можете разместить ссылку на наш сайт:
Документы


При копировании материала укажите ссылку ©ignorik.ru 2015

контакты
Документы